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Abstract

Biomarkers are essential for performing early diagnosis, monitoring neu-
rodegenerative disease progression, gauging responses to therapies, and
stratifying neurodegenerative diseases into their different subtypes. A wide
range of molecular markers are under investigation in tissues and bioflu-
ids as well as through imaging; moreover, many are prominent proteins
present in cerebrospinal fluid. However, in more frequently and easily col-
lected fluids such as plasma, these proteins show only a modest correlation
with disease and thus lack the necessary sensitivity or specificity for clinical
use. High-throughput and quantitative proteomic technologies and systems-
driven approaches to biofluid analysis are now being utilized in the search
for better biomarkers. Biomarker discovery involves many critical steps in-
cluding study design, sample preparation, protein and peptide separation
and identification, and bioinformatics and data integration issues that must
be carefully controlled before independent confirmation and validation. In
this review, we summarize current proteomic and nucleic acid technolo-
gies involved in the discovery of biomarkers of neurodegenerative diseases,
particularly Alzheimer’s, Parkinson’s, Huntington’s, and prion diseases.
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INTRODUCTION

Neurodegenerative (ND) disease is a large class of complex diseases including Alzheimer’s disease
(AD), Parkinson’s disease (PD), frontotemporal dementia (FTD), Huntington’s disease (HD),
and prion disease. These diseases share one key neuropathological feature: the accumulation of
fibrillar aggregates of proteins that result from protein misfolding. Accumulation of misfolded
proteins is now considered a key event in the pathogenesis and progression of these ND diseases
(1–3). Proteins that are prone to misfold include amyloid-beta (Aβ), associated with AD (4–
6); tau, associated with AD and FTD (2, 7–9); α-synuclein, associated with PD (10, 11); and
polyglutamine-containing proteins, associated with HD (12). Recent studies of these misfolded
proteins suggest that they share key biochemical characteristics and propagation mechanisms
with prion protein. As with the pathogenic prion protein, misfolded proteins in other diseases can
function as a template to catalyze the misfolding of the normal proteins and their assembly into
insoluble, β-sheet-rich, fibrillar aggregates (4).

At this time, ND diseases are chronic, progressively debilitating, and incurable. The disabling
effects for individuals with ND diseases may continue for years or even decades. The prevalence
of ND diseases has increased globally, most noticeably in the aging populations of the developed
world. Among different types of ND diseases, AD appears to be the most common: In the United
States, 5.4 million people are affected (13); worldwide, more than 33.9 million (14). AD prevalence
is forecasted to triple over the next 40 years, which will place a heavy burden on society and its
health-care systems in terms of both economic costs and human impacts. Thus, methods for early
and reliable detection of various ND diseases are urgently needed to improve patients’ quality
of life and to provide necessary health and social care. Numerous quantitative, high-throughput
technologies have recently been introduced into the search for fluid biomarkers (Figure 1). Reli-
able biomarkers can also facilitate the development of therapeutics to slow the progression of ND
diseases.

Neurodegenerative Diseases Are Systemic Disorders

Like most diseases, the ND diseases affect not just the neurological system. The central nervous
system (CNS), which includes the brain and the spinal cord, plays an essential role in all aspects
of life, including some level of regulation of all other systems in the human body. Alterations
in CNS function inevitably lead to systemic dysfunction involving multiple outside organs. For
example, PD is classified as a degenerative CNS disorder that affects movement. However, nonmo-
tor symptoms related to olfaction (reduced ability to smell), eye movement (rapid eye movement
during sleep), gastrointestinal and urogenital functions, and postural hypotension are common
in PD patients. HD is another example; patients with HD often suffer ailments in peripheral
tissues including pneumonia, heart conditions, and muscle weakness. Whereas brain dysfunc-
tion may contribute to these abnormalities, the disease-causative gene, huntingtin, is ubiquitously
expressed. Such expression may directly cause various cellular dysfunctions including defective

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
Figure 1
Pathophysiological hallmarks, targeted biofluids, and sample analysis methodologies for neurodegenerative disease biomarker
discovery. Hallmarks include intracellular inclusion body formation, extracellular protein aggregation, and inflammation. Aggregate
components and related compounds appear in CSF, blood, and saliva. A range of quantitative and high-throughput (omic) technologies
now enable parallel monitoring of the many different classes of compounds (e.g., proteins, nucleic acids, lipids, and metabolites).
Abbreviations: Aβ, amyloid-beta; CSF, cerebrospinal fluid; Htt, huntingtin; miRNA, microRNA.
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energy metabolism, transcriptional dysregulation, and enhanced apoptotic activities in organs
outside the CNS (15).

Some ND diseases may affect the normal function of gastrointestinal tract. Most notably,
gastrointestinal dysfunction is common in PD. In some PD patients, the initial symptoms can
appear first within the digestive tract rather than within the CNS (16, 17). Other ND diseases
with connections to the gastrointestinal tract are prion disease and Whipple’s disease. Pathogenic
prions are initially located in the small intestine and tonsils and move to the brain and spinal cord
in the later stages of disease development (18). Whipple’s disease is a disorder caused by infection
of Tropheryma whipplei and characterized by diarrhea and abdominal pain (19, 20). Additionally,
approximately 10–40% of patients also present with clinical neurological dysfunctions including
dementia with disorientation and memory loss.

Current Diagnostic Approaches

Despite thorough studies of a large number of candidate biomarkers in each of the major ND
diseases—e.g., the cerebrospinal fluid (CSF) levels of tau or Aβ proteins for AD—no fluid
biomarker has been fully validated. Because biopsy samples are out of the question for ND dis-
ease diagnosis, the current diagnoses are based on the combination of genetic testing, cognitive
assessment, psychiatric evaluation, and imaging analysis. For some diseases, the final confirmation
arrives only with postmortem pathological or molecular analyses of brain tissue.

The causative mutations or genetic risk factors associated with some ND diseases have been
identified in the past several years. These include, for example, the trinucleotide length associated
with the huntingtin gene for HD and mutations in amyloid precursor protein (APP), presenilin 1,
presenilin 2, and apolipoprotein E for AD. These findings provide some genetic diagnostic tests for
the diseases; however, it is difficult to predict the disease onset, disease progression, and therapeutic
response based on these results. In addition, the results from genetic tests do not cover the entire
population of patients with ND diseases.

For imaging-based disease diagnosis, four major technologies are regularly used in assessing
neurodegeneration: structural magnetic resonance imaging (sMRI), functional MRI (fMRI), mag-
netic resonance spectroscopy (MRS), and positron emission tomography (PET). MRI measures
brain morphology and can detect changes in the gray matter and white matter during the pro-
gression of ND disease. In AD, these changes include the loss of neurons, synapses, dendritic
branches, and axons, as well as the expansion of CSF spaces. Neuronal loss correlates with Braak
stage and directly relates to impaired cognitive function in AD (21). Because there is a significant
anticorrelation between neurofibrillary tangle (NFT) density and neuronal counts, sMRI can be
used to assess the progression of AD. The rate of ventricular volume enlargement measured by
sMRI can also be used to monitor disease progression or response to treatment with therapeutics
that are targeted at NFTs and senile plaque pathologies associated with AD (22).

Tissue oxygen levels can be assessed by fMRI, which reflects the cellular (neuronal) activity in
specific brain regions (23). fMRI studies in AD patients have found altered patterns in the medial
temporal and parietal lobes that correspond to structural changes detected by sMRI (24). PET
with 18F-labeled tracers, such as 18F-2-fluoro-2-deoxy-D-glucose (FDG), can be used to image
brain activity and aberrant structures. AMYViDTM (18F-florbetapir), a compound that binds to
amyloid plaques, allows the imaging of amyloid plaques directly with PET (25). MRS imaging of
N-acetylaspartate can be used to monitor the functional status of neuronal mitochondria. Reduced
levels of this nervous-system-specific metabolite have been found repeatedly, even in the absence
of brain atrophy (26). Reviews of current imaging techniques have been authored by Politis et al.
(27) and O’Brien (28).
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The combination of fluid biomarkers with functional and structural imaging is expected to
improve diagnostic accuracy beyond the individual assays. To date, only a small number of studies
have explored this strategy. In one study, the misclassification rate for conversion of mild cognitive
impairment (MCI) to AD, based on neuropsychological testing and other clinical data, was 41.3%.
The combination of MRI and PET imaging with CSF biomarkers reduced this error rate to 28%.
FDG PET appeared to add the greatest prognostic information (29). The combination of CSF
biomarkers with MRI or CT analysis of atrophy of the medial temporal lobe has been reported
to improve AD detection (30, 31).

One challenge for the diagnosis of ND diseases is their complexity. Often, there is no clear
distinction among different ND diseases in their clinical presentations. For example, it is difficult
to separate some patients with AD or PD from patients with Lewy body dementia (32, 33). This
difficulty limits the ability of the phenotype-based diagnostic approaches, such as cognitive as-
sessment, to provide accurate or detailed classification. Also, obtaining well-characterized human
samples for biomarker discovery and conducting meaningful clinical trials during drug develop-
ment are challenging tasks. However, the development of new high-throughput technologies has
led to the discovery of numerous new biomarker candidates for each ND disease.

BIOMARKERS OF NEURODEGENERATIVE DISEASES

Samples

The limited availability of tissue samples from disease sites and the overlap of clinical presentations
among different types of ND diseases greatly reduce the ability to achieve early and reliable
diagnoses. There is an urgent need for informative biomarkers to assist in the study of ND
processes, which may lead to the development of disease treatments. Ideally, biomarkers must
fulfill numerous criteria, including accessibility through noninvasive methods, specificity for the
pathology, reproducibility of test results, reflectivity of changing pathology, and translatability
from laboratory to clinic (34). On the basis of their chemistry, most molecular biomarkers can be
grouped into three major subtypes: small-molecule biomarkers, protein-based biomarkers, and
RNA-based biomarkers. Among them, the most widely reported candidates are protein-based
biomarkers, particularly the aggregation-prone proteins central to ND disease pathology but also
proteins associated with oxidative stress and inflammation.

Cerebrospinal Fluid

CSF is currently the most frequently analyzed body fluid in biomarker discovery, due to its prox-
imity to the diseased organ (35–39). Relative to blood and many other body fluids, CSF has low
protein and RNA concentrations; therefore, the sample preprocessing is much easier than for
plasma. However, this also creates a unique problem for CSF in that any blood contamination
during the sample collection process will have a significant impact on the composition of protein
and RNA in the CSF (40). A significant issue for CSF is the invasive collection procedure. Lumbar
puncture requires a highly trained provider and imposes discomfort and some health risk to the
patient. This makes it difficult to use for routine screening and for regular follow-up sampling.

Blood, Plasma, and Serum

All organs in the body are perfused by blood to obtain necessary nutrients and remove metabolic
waste from cells. Although some molecules in blood are the product of cell lysis through normal
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cell turnover, many circulating biomolecules are deliberately released by cells for specific purposes,
as exemplified by the hormones that serve to keep the various body organs operating in concert.
Any pathological perturbation would be expected to alter the spectra of various molecules in the
blood. Therefore, blood and its various subcomponents—such as peripheral blood mononuclear
cells, serum, and plasma—are probably the most commonly used biological materials in general
biomarker discovery projects. For example, whole-blood RNA has been used to identify tran-
scripts that may be associated with specific pathological conditions (41–43). To obtain RNA free
from proteins and cells, serum or plasma prepared from whole blood is commonly used. The
main drawback of using blood or its subcomponents for biomarker discovery is the complexity of
biomolecules in the sample, as they are derived from all cell types and organs of the body (44, 45).
The concentrations of blood proteins vary across a dynamic range of 1010; accordingly, the 21
most abundant proteins that constitute 99% of the blood protein mass obscure the identification
of less abundant proteins unless a preprocessing step to remove those abundant proteins or to
select a targeted protein subpopulation such as the glycoproteins is employed (46–50).

Urine

Urine also contains proteins, RNAs, and small molecules and metabolites. Urine is easy to obtain
and can be collected frequently. Urine has also been used in biomarker discovery for ND disease.
For example, the 8-hydroxydeoxyguanosine (8-OHdG) level in urine correlates well with the stage
of PD (51, 52), and the urine level of AD7c, a neuronal thread protein, correlates with the severity
of dementia in AD (53).

Saliva

More recently, saliva has gained attention in biomarker discovery for ND diseases because the
submandibular gland where saliva is produced expresses both tau and APP, key proteins for various
ND diseases (54, 55). The salivary glands are highly vascularized, and the RNAs and proteins in
saliva can arise in the glands or move from the blood via diffusion or active transport (56). As with
urine, saliva is easy to collect, with or without stimulation. Unstimulated whole saliva is thought
to correlate best with systemic clinical conditions, as (chemical) stimulants of saliva production
may change the salivary fluid composition.

Animal Models

Although no model can completely mimic the complexity of human diseases, animal models pro-
vide valuable contributions to biomarker discovery efforts and are important in linking biomarkers
to the molecular mechanisms behind neurodegeneration. In the search for disease markers, animal
models can be used to track subtle biochemical, histological, and behavioral changes that occur
long before clinical signs appear. Challenges relating to model development include differences in
life span between humans and laboratory animals, differences in the fundamental biochemistry or
the disease mechanisms between the two, and our limited understanding of the underlying causes
of ND disease. Additionally, a majority of highly cited animal research fails to translate to human
randomized trials (57), and meta-analysis has revealed statistical significance in animal studies of
ND disease that is not replicated in human studies (58). This can be attributed, at least partially,
to small-study effects and to publication bias—errors that can be avoided by adopting standards
similar to those used in the clinic to ensure that results are based on high-quality and unbiased
data.
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One approach toward simulating the development of human ND diseases in animals utilizes ge-
netic engineering to overexpress, underexpress, or knock out genes that are significantly associated
with the diseases. For example, AD models exhibiting protein accumulation leading to neuronal
damage have been created by an overexpression of Aβ or tau and by a transgenic combination
of APP, mutated presenilin, and tau. The triple-transgenic mice show a pattern of progression
closely matching the human disease. Aβ accumulates first in the cortical regions and then spreads
to the hippocampus and amygdala, whereas the tau accumulation moves in the reverse direction
(59).

Models of familial PD have been created by targeting PD-related genes such as α-synuclein
(PARK1), Parkin (PARK2), UCHL1 (PARK5), PINK1 (PARK6), DJ-1 (PARK7), and LRRK2
(PARK8 ), with varying success. The best of these animal models, which contains the α-synuclein
A53T mutation, displays much of the desired pathology including α-synuclein aggregation,
oligomers, fibrils, phosphorylation, ubiquitination, and progressive neurodegeneration. Only the
motor deficits are absent (60). On the basis of reports linking PD to mitochondrial dysfunction,
a more complete model has been created by targeting the mitochondrial respiratory pathway
in dopaminergic neurons. Cell type–specific inactivation of TFAM (mitochondrial transcription
factor A) produces a model with key disease features including late onset, a realistic progres-
sion of symptoms, and motor deficits that are reversible with L-DOPA treatment. PD symptoms
can also be induced in standard mouse strains through the administration of neurotoxins such as
6-hydroxydopamine and 1-methyl 4-phenyl 1,2,3,6-tetrahydropyridine (61).

Numerous mouse models have been generated in an effort to emulate the development of
human HD through the introduction of a huntingtin gene carrying unstable expansion of CAG
repeats—the causative mutation (62). The HD mouse models carrying long CAG repeats recapit-
ulate features of the human disease, with a positive correlation between repeat length and severity
of the phenotype. They are being used to study early molecular changes in relevant tissues that
start well before overt phenotypic changes appear.

Transgenic mice expressing the human prion gene in the absence of the endogenous mouse
prion gene reproduce all of the key features of human prion disease including long asymptomatic
periods prior to fatal neurodegeneration (63, 64). Researchers can also experimentally induce
standard inbred strains to develop prion disease by inoculating the prion-containing diseased-
brain homogenate intracerebrally or intraperitoneally (65, 66). In addition, several lines of prion
knockout mice have supported the hypothesis that prion protein is essential for both transmission
and pathogenesis of the prion diseases (67, 68). These prion knockout mice have been used as
critical controls to filter out biological and systematic noises generated among prion mouse models.
It is useful to discuss this in detail as it provides deep insights into the power of the dynamical
studies of disease-perturbed networks.

We inoculated the brains of mice with infectious prions and then analyzed the brain transcrip-
tomes of normal and diseased animals at 10 time points across 22 weeks during the progression
of the disease, subtracting the transcriptomes of normal mice from those of the diseased mice
at each time point. These subtractions identified the differentially expressed genes (DEGs)—
approximately 7,400 of the mouse genes were DEGs—which represented an enormous signal-
to-noise problem. The noise was of two different types: technical and biological. We developed
techniques to help address the technical noise arising from the measurements (66). The approach
of adapting multiple inbred-strain/prion-strain mice also allowed us to subtract away much of the
biological noise, resulting in approximately 300 DEGs that apparently encoded neurodegenera-
tion induced by pathogenic prion protein. From histopathology studies, we identified four major
networks involved in the prion-induced neurodegeneration process: prion replication and accu-
mulation, glial activation, neuronal degeneration, and apoptosis. Approximately 200 of the 300
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DEGs mapped into the protein networks that represented these four systems, and the remaining
100 defined six smaller networks that heretofore were not known to be a part of the disease. Three
key observations were made from this study. First, the four networks became disease perturbed in
sequential order: first prion accumulation, then glial activation, and finally the two neurodegen-
eration networks. Thus, if one is interested in early detection or effective therapy for the diseases,
understanding the initial disease-perturbed network is key. Second, the collective dynamics of
these 10 networks explained virtually every aspect of the neuropathology of this disease. Third,
if some of the proteins in the disease-perturbed networks are secreted into the blood, they will
let us follow the progression of neurodegeneration in the blood. Indeed, some of these proteins
were found in the blood (see below). Moreover, the study was instrumental in providing prelim-
inary evidence of the power of using organ-specific (brain-specific) molecules in blood to reflect
networks and biological processes that are perturbed in prion disease. These studies allowed us
to (a) diagnose the prion disease 10 weeks before any clinical signs were apparent and (b) follow
the progression of the disease by delineating just when each of the networks became disease per-
turbed. The order and change in the blood reflected the timing of the disease perturbations seen
by transcriptome analyses in the brain.

Methods Used in Biomarker Discovery

Depending on the types of biomolecules, several different methods are commonly used in
biomarker discovery. For identifying protein-based biomarkers, the traditional method is to use
2-dimensional gel electrophoresis (2DGE) to separate the proteins from samples on the basis of
charge and size differences. Distinct protein spots can then be excised from the gel and analyzed
by mass spectrometry (MS) to determine the protein identity. This approach is extremely useful in
identifying changes associated with posttranslational protein modifications and protein isoforms
in the samples (69, 70). However, this process is time consuming, difficult to achieve with consis-
tent reproducibility, challenging for small or hydrophobic proteins, and ambiguous when multiple
proteins comigrate to the same spot on the gel. Moreover, 2DGE displays only a small fraction
of the total proteins in tissues or blood (71).

With the development of quantitative, high-performance MS in the past decade, its direct use
as a discovery tool is now possible (72). Quantitative techniques not only identify proteins on
the basis of unique peptide mass/charge ratios but also extrapolate protein concentrations from
peptide signal magnitudes. Identification accuracy depends on the completeness of the search
database, and detection limits vary with the instruments and techniques used. The numerous
instruments and analysis techniques can be grouped into two major approaches for biomarker
discovery: labeled and label free. However, thus far, neither labeled nor label-free methods can
be used effectively in identifying posttranslational modifications or protein isoform changes in
the samples. The labeled approaches, such as isobaric tags for relative and absolute quantitation
(iTRAQ) (73) and stable isotope labeling by amino acids in cell culture (SILAC) (74), significantly
reduce operation-related sample-to-sample variations because all samples are mixed and processed
at the same time after being labeled with different tags. The number of samples that can be used
in one experiment depends on the availability of tags—currently, eight independent tags are
available for iTRAQ. Compared with the labeled approaches, the label-free approach provides
more flexibility in the number of samples that can be included in an experiment and requires less
hands-on operation. However, the label-free method requires more computation time for data
analysis and higher consistency from sample preparation. It also requires a stable mass spectrometer
because it depends on comparing data from independent MS runs. The drawback of either the
2DGE or MS-based protein biomarker discovery approach is the number of proteins that can be
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surveyed in a single experiment (usually several hundred for body fluids and two to three thousand
for tissue/cell samples). A recent study (75) reported that combining the results from data obtained
from targeted proteomics with data obtained from the SWATHTM data acquisition method (AB
SCIEX, Foster City, California) could significantly increase the number of proteins that can be
measured. This new approach may provide a more comprehensive survey of proteins in various
body fluid samples.

Even though the existence of cell-free circulating nucleic acid was reported almost 60 years
ago, the recent finding of stable RNA in body fluids makes RNA-based biomarkers a new exciting
area. RNA has long been considered only the conduit that links the information (DNA) and the
execution (protein) parts of the biological system. This monolithic view of RNA has completely
changed in recent years. RNA is involved in every aspect of biological activity, including structural,
enzymatic, informational, and regulatory roles (76–79). microRNAs (miRNAs), small regulatory
RNAs in cells, constitute probably one of the most investigated extracellular RNAs in body fluids.
The levels of certain miRNAs in the circulation correlate well with different pathological con-
ditions; examples include the level of miR-122 for various liver diseases, miR-141 for prostate
cancers, and miR-499 and miR-1 for cardiovascular conditions (80–83). Due to the sensitivity
of the method and to the limited number of known miRNA species in humans (approximately
800), quantitative polymerase chain reaction (qPCR) is the most commonly used method to con-
duct surveys on miRNAs in circulation. In addition to miRNAs, the circulation contains other
types of RNA, including protein-coding messenger RNAs (mRNAs) and other noncoding RNAs
(ncRNAs). Because the RNA concentration in body fluids usually is low, it is not possible to use
traditional profiling methods such as microarrays to survey the changes in the spectrum of RNAs
in blood. The recent development of highly parallelized next-generation sequencing technologies
has provided an opportunity to conduct comprehensive surveys of RNA in the circulation. We
have used this approach to identify numerous RNA species including long intervening noncod-
ing RNAs (lincRNAs), mRNAs, and miRNAs, all found in the peripheral circulation. Relevant
to biomarker discovery, their concentrations in plasma have a good correlation with liver injury
induced by acetaminophen overdose in a mouse model (84). We believe this approach might be
applicable to other diseases, including ND disease.

MS is probably the most suitable approach for metabolomic biomarker discovery. The Human
Metabolome Database (http://www.hmdb.ca) contains more than 7,000 small-molecule metabo-
lites derived from endogenous and exogenous biomolecules that have been detected in the body.
One of the biggest challenges in metabolomics is to identify disease-specific metabolites and to
pinpoint the origins of the molecules.

Urgent Need for Standard Operating Procedures

Even though many body fluids are readily available and routinely processed in clinical laboratories,
varying sample collection procedures (e.g., stimulated versus unstimulated saliva, serum versus
plasma, type of anticoagulant used in plasma preparation, method of RNA isolation, quantification
platform) often affect the outcome of biomarker discovery and validation. For example, several
studies report a difference of RNA and protein concentrations between serum and plasma (85–87).
For circulating RNA—especially for the miRNAs, which have short sequence length (from 17 to
22 nucleotides long) and high sequence similarity among the different members—the correlations
from profiling results among different measurement platforms have been low (88, 89). Therefore,
comparisons of the results from different platforms pose a problem. To facilitate the discovery and
validation of biomarkers, it is critical to have standard operating procedures for sample collection,
preparation, transportation, and storage as well as for the measurement platforms.
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Table 1 Notable fluid protein biomarkers

Disease Biomarker Category Change Comments
AD CSF Aβ42 Aggregation Down Also down in PD

CSF Aβ42/Aβ40 Aggregation Down
CSF tau Aggregation Up
CSF APP isoforms Aggregation Weak up
CSF BACE1 Aggregation Up
CSF MCP-1, CD14 Inflammation Weak up
CSF SOD1 Oxidative stress Unchanged Possible pharmacodynamic

marker
Urine AD7c Inflammation Up

PD CSF α-synuclein Aggregation Down Also up in CJD
CSF DJ-1 Oxidative stress Up
Plasma DJ-1 Oxidative stress Up
Serum 8-OHdG Oxidative stress Up Also up in AD and ALS
Urine 8-OHdG Oxidative stress Up

HD CSF clusterin Inflammation Up

Abbreviations: 8-OHdG, 8-hydroxydeoxyguanosine; Aβ, amyloid-beta; AD, Alzheimer’s disease; ALS, amyotrophic lateral
sclerosis; APP, amyloid precursor protein; BACE1, β-site APP-cleaving enzyme 1; CJD, Creutzfeldt-Jakob disease; CSF,
cerebrospinal fluid; HD, Huntington’s disease; MCP-1, monocyte chemoattractant protein 1; PD, Parkinson’s disease;
SOD1, superoxide dismutase 1.

Protein-Based Biomarkers

Most ND diseases are characterized by specific abnormal modifications, i.e., misfolded protein
aggregates. The main components of these intra- and interneuronal insoluble fibrils are ex-
tremely promising biomarker candidates that are being extensively investigated and validated
(Table 1).

Amyloid-beta. Aβ, the major component of extracellular senile plaques in AD, is a by-product of
APP metabolism. Abnormal deposition of Aβ1−40 and Aβ1−42, the main species of Aβ in the brain,
is attributed to unusually high levels of Aβ inside brain cells due to either an increased production
in familial AD or a decreased clearance in sporadic AD (90, 91). The measurement of Aβ species
(Aβ1−40/Aβ1−42) in CSF is a reliable diagnostic biomarker of AD (92). However, published results
have found no or low correlations between plasma Aβ or CSF Aβ and PET amyloid plaques (93,
94). Due to the universal expression of APP in the body, measurements of plasma Aβ are subject
to more sources of variability than are those of plasma CSF Aβ. The complexity of blood-brain
barrier and blood-CSF barrier functions induces even greater variation (95). It is believed that
further clinical research and assay development will be needed before plasma Aβ can be applied
as a state, risk, or trait biomarker of AD.

The key proteins involved in Aβ production, APP and β-site APP-cleaving enzyme 1
(BACE1), are also of great interest as CSF biomarkers. The cleavage of APP by BACE1 produces
an amyloidogenic C-terminal fragment (C99) and releases soluble APPβ. C99 is then cleaved
by γ-secretase to produce the Aβ peptide. Although reports vary for soluble APP levels, BACE1
levels correlate with Aβ in AD. Of interest, CSF BACE1 levels are even higher in patients with
amnestic MCI compared with AD patients (96, 97).
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Tau protein. Tau protein is the main component of intraneuronal NFTs observed in AD, FTD,
and a group of more than 20 other tau-opathies. This microtubule-associated protein is crucial in
axonal functions and highly abundant in neurons of the CNS but less common elsewhere, including
in CNS astrocytes and oligodendrocytes. Both of these characteristics, along with its molecular
diversity arising from alternative splicing and posttranslational modification (phosphorylation),
make tau a promising biomarker of a range of ND diseases.

One property of abnormal hyperphosphorylated tau (p-tau) is high resistance to enzymatic
proteolysis, which results in its accumulation in the neurons. As tau hyperphosphorylation can
occur in the early stages of disease development, even before the first clinical symptoms appear
(Braak stage 1), CSF p-tau could be not only a useful diagnostic and surrogate marker in the
advanced stages of the disease but also a prognostic marker in the earliest stages, even before the
onset of the disease, i.e., in MCI (98). This possibility has been supported by recent research that
showed elevated CSF total tau (t-tau) and p-tau in early AD comparable to those in advanced AD
(99). Notably, persistent high levels of CSF t-tau and p-tau over long periods during the disease
process are needed to predict the progression of MCI to AD and to distinguish AD/MCI-AD
from other tau-opathies and from axonal damage arising from traumatic brain injury, multiple
sclerosis, or other ND diseases (100).

α-Synuclein. α-Synuclein is a major component of Lewy bodies and Lewy neurites (the
hallmark protein inclusions in PD, dementia with Lewy bodies, and multiple system atrophy)
and has been a major area of inquiry for PD treatments and biomarker discovery. Although
α-synuclein has long been assumed to be an intracellular protein, recent studies have confirmed
the presence of α-synuclein in body fluids such as CSF and blood, both in PD and normal
individuals (101). However, thus far, no correlation has been reported between CSF/blood
α-synuclein levels and PD disease severity or duration (102–104). In recent years, extracellular
α-synuclein oligomers/fibrils, which may derive from dying neurons, have been observed to
induce neurotoxic and neuroinflammatory effects in several neuronal and microglial cell culture
studies (105, 106). These findings suggest that α-synuclein could be a seeding agent in the
initiation and progression of neurodegeneration (107). It would be useful to develop specific and
efficient oligomer α-synuclein assays for body fluids to further biomarker research.

Inflammation. A great deal of recent evidence suggests that neuroinflammation is a key pro-
cess in ND diseases. Activated microglia are regularly found surrounding plaques and secreting
proinflammatory cytokines. It has been hypothesized that activated microglia have both neuro-
protective and neurotoxic effects, although it is not known at what point chronic inflammation
shifts the balance from beneficial to damaging (108, 109). Biomarkers of CNS inflammation are
therefore being sought to help observe this shift and discover the pathogenic mechanisms. Ad-
ditionally, these biomarkers will be necessary for developing therapies that involve microglial
activation. Numerous potential markers have been investigated.

Proteins produced by activated macrophages are elevated in the CSF of AD patients. These
include chitotriosidase, YKL-40, monocyte chemoattractant protein 1 (MCP-1), and CD14 (110–
113). Although the primary functions of the enzymes chitotriosidase and YKL-40 are unknown,
these closely related proteins seem to have a role in inflammation and tissue remodeling. The
chemokine MCP-1 is a microglial secretion factor that appears to play an important role in
macrophage migration. The surface protein CD14 serves as a cofactor for Toll-like receptors
(TLRs)—essential components for pathogen recognition in the innate immune system. Microglial
TLRs and CD14 are involved in the inflammatory reaction surrounding Aβ deposits (114). Fur-
thermore, increased levels of soluble CD14 have been observed in CSF from PD patients in

www.annualreviews.org • Neurodegeneration Biomarker Discovery 467

A
nn

u.
 R

ev
. P

ha
rm

ac
ol

. T
ox

ic
ol

. 2
01

4.
54

:4
57

-4
81

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
by

 P
oh

an
g 

U
ni

ve
rs

ity
 o

f 
Sc

ie
nc

e 
an

d 
T

ec
hn

ol
og

y 
(P

O
ST

E
C

H
) 

on
 0

9/
23

/1
4.

 F
or

 p
er

so
na

l u
se

 o
nl

y.



PA54CH22-Hood ARI 12 December 2013 11:14

addition to that of AD patients (25). Alone, these microglial markers are probably insufficient for
AD diagnosis. In each case, disease specificity is insufficient, and independent studies have not
always produced consistent findings. Yet these markers may prove useful in combination with
other types of biomarkers or in stratifying patients into subgroups.

A proteomic study of HD plasma utilizing 2DGE, MS, and ELISA assays observed several
proteins related to the innate immune response, including clusterin and α2-macroglobulin. Both
have links to the pathogenesis of ND disease; clusterin is upregulated in the HD brain, colocalizes
with Aβ plaques, and is elevated in AD CSF (115).

Oxidative stress. Attenuated levels of copper-zinc superoxide dismutase 1 (SOD1) have been
observed in brain tissue from AD patients (116). Reduced levels of an antioxidant such as SOD1
could change the response to oxidative stress and contribute to neuronal cell loss. As mentioned
above, urinary 8-OHdG levels have been shown to change in PD. This product of oxidized DNA
increases in a stage-dependent manner. Another protein of great interest in PD is DJ-1, a member
of the peptidase C56 family. DJ-1 acts as a sensor for oxidative stress and is believed to protect
neurons against it (117). Whereas some PD studies have reported both elevated CSF and plasma
DJ-1 levels (118, 119), others have measured no difference in serum DJ-1 concentrations between
PD patients and healthy controls (120).

RNA-Based Biomarkers

As for many other diseases, all categories of blood RNA have been analyzed in the search for
biomarkers of ND disease. For example, decreased leukocyte gene expression levels of adrenoceptor
alpha 2C (ADRA2C) and defensin 5 (DEF5) (121), CD243 antigen (ABCB1) (122), and chemokine
(C-C motif) ligand 5 (RANTES) (123) have been reported to distinguish AD patients from controls.
Other studies have reported that increased levels of specificity protein 1 (SP1) (124), Toll-like receptor
2 (TLR2) and Toll-like receptor 4 (TLR4) (125), and granulin (GRN) (126) are linked to AD. A set
of 96 genes (127) and 170 gene probes (128) also have been used to separate patients from healthy
individuals with good sensitivity and specificity.

Decreased levels of suppression of tumorigenicity 13 (ST13), B-cell CLL/lymphoma 11B (BCL11B)
(129), and leucine-rich repeat containing 8C (LRRC8C) (130) and increased levels of α-synuclein (131)
have been reported to correlate with PD. Molochnikov et al. (132) identified a panel of five genes
that separate early/mild PD patients from healthy age-matched controls with 90.3% sensitivity
and 89.1% specificity: S-phase kinase-associated protein 1 (SKIP1a), huntingtin interacting protein 2
(HIP2), aldehyde dehydrogenase 1 family member A1 (ALDH1A1), proteasome 26S subunit ATPase 4
(PSMC4), and heat shock 70 kDa protein 8 (HSPA8). The performance of the five-gene classifier
was further validated in an independent set of 30 patients at the advanced stage of PD, classifying
correctly all cases as PD (100% sensitivity) (132).

Although circulating RNAs, especially miRNAs, have been studied extensively in diseases
such as cancer, their analyses are still relatively new in ND diseases. Several reports describe the
involvement of miRNAs in the brain tissues of patients with different ND diseases, such as the
downregulation of Let-7i, miR-101, miR-106, miR-107, miR-124a, miR-15, miR-181c, miR-210,
miR-22, miR-26b, miR-298, miR-328, miR-34a, miR-363, and miR-93, and the upregulation
of miR-125b, miR-128, miR-146, miR-197, miR-320, miR-511, and miR-9 in AD (133, 134).
Regarding body fluids, only a few miRNA-related studies address ND diseases (38, 135–137, 138,
139).

Margis et al. (140) identified a set of six blood miRNAs, three of which give good separation
between untreated PD patients and healthy individuals (miR-1, miR-22∗, and miR-29), and
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three of which can distinguish treated from untreated PD patients (miR-16–2∗, miR-26a2∗, and
miR-30a). Khoo et al. (139) compared the miRNA spectra of plasma samples from patients with
PD with those of normal individuals and identified numerous miRNAs showing concentration
changes in the plasma of PD patients. The results were further validated with a different set
of samples, and four miRNAs (miR-1826, miR-450b-3p, miR-626, and miR-505) produced a
positive predictive power with 91% sensitivity and 100% specificity.

For AD, Geekiyanage et al. (141) reported a decrease in miR-137, miR-181c, miR-9, miR-29a,
and miR-29b levels in serum from patients with probable AD. In addition to miRNAs in blood,
those in CSF have also been examined in AD patients as potential biomarkers. Using a qPCR
panel, Cogswell et al. (138) reported 60 differentially expressed miRNAs in CSF samples between
controls (nondemented, Braak stage 1) and AD patients (demented, Braak stage 5). In another
study, Alexandrov et al. (38) identified four miRNAs (miR-146a, miR-155, miR-9, and miR-125b)
with higher levels in CSF from AD patients relative to controls.

Using NT2, a neuronally committed human teratocarcinoma cell line that overexpresses mu-
tant huntingtin exon 1, Gaughwin et al. (136) identified a significant induction of miR-34b and
miR-1285. The increase of miR-34b levels in plasma was also observed in individuals with preman-
ifest HD compared with normal individuals. These findings support the possibility of developing
miRNA-based biomarkers from blood or CSF in different ND diseases.

Lipid and Metabolite Biomarkers

For ND diseases, lipid peroxidation is a common phenomenon. Increased levels of numerous
oxidized products such as isoprostanes and isofurans derived from arachidonic acid, and neuro-
prostanes derived from docosahexaenoic acid can be found in the CSF of patients with AD or
HD. However, the quantification of isoprostanes in plasma and urine of AD patients has yielded
inconsistent results compared with their quantification in CSF. Xu et al. (142) has reviewed the
application of metabolomic techniques to AD biomarker discovery.

FUTURE PROSPECTS

For biomarker discovery, the ability to combine and relate the data between blood and tissue
is a powerful approach because it provides the means to assess the extent to which the blood
concentrations reflect the disease process in the target organ(s) by following the changes in con-
centration of specific molecules that are associated with the biological processes in the diseased
organs. However, for ND diseases, tissue access through biopsy is usually not possible, and post-
mortem tissue samples usually do not reflect early-stage pathology. A good animal model might be
one approach to compensate for the deficiency of human samples and thus might help elucidate
the networks associated with ND diseases. Recent advances in generating induced pluripotent
stem cells from patients may also provide a unique opportunity to understand the etiology and
underlying mechanism of ND diseases. Another key approach will be to use the blood as a window
into the normal and diseased biology of the brain, and a systems approach to understanding the
molecular spectrum in blood may facilitate this (Figure 2).

Systems Biology

The challenge in identifying biomarkers is to distinguish a small signal from an immense amount
of noise. For example, the typical approach to blood-based biomarker discovery is to compare the
molecular profiles of blood samples from normal individuals with those from diseased individuals;
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inevitably, enormous numbers of differences are found. However, 99% of these differences are
noise, so the question is, How does one distinguish real signals from noise? Indeed, most published
biomarker discovery studies in the past have failed to provide reliable biomarkers because of their
inability to distinguish signal from noise (143). Fortunately, a systems approach to biomarkers
provides a multiplicity of powerful tools for identifying such signals.

Using systems biology to understand disease mechanisms and identify informative
biomarkers. A systems approach recognizes biology and medicine as information sciences that
involve two fundamental types of information: the digital genome and the environmental signals
that come from outside the genome. Biological networks connect these two types of information
and shape their resulting phenotypes, be they normal or diseased. In a diseased state, one or more
biological networks is perturbed genetically and/or environmentally, and these perturbations alter
the patterns of gene expression within the diseased organ. These dynamically changing and ex-
panding altered patterns of gene and protein expression can reflect the recruitment of additional
disease-perturbed networks, indicate the progression of the disease, and explain the fundamental
pathogenesis of the disease.

A systems approach to understanding the etiology and mechanism of diseases employs two
strategies: (a) assessing the changes in the informational molecules (e.g., ncRNAs, mRNAs, or
proteins) in the diseased tissues across the progression of the disease, and (b) understanding how
the dynamics of the inferred networks correlate with the etiology and progression of the disease.
However, because access to tissue samples through biopsy is usually impossible for ND diseases,
most of the mechanistic studies for various ND diseases have been conducted with postmortem
tissues or animal models. One significant drawback of postmortem tissues is that they reflect only
the final stage of the disease; therefore, it is difficult to identify the etiology and the associated
networks at the disease’s early stages. A good example of the systems approach using an animal
model to study both early and late stages is the inducible prion disease application described
above.

A systems approach to the discovery of blood (and tissue) biomarkers. A systems approach
to the discovery of blood (and tissue) biomarkers should utilize the following principles:

� Blood is the ideal fluid for accessing biomarkers because it bathes all organs and contains
secreted/released proteins from each of these organs. Changes in biomarker concentrations
in the blood can thus reflect changes in the disease state of their cognate organs.

� The diagnostic analyses should be carried out in a longitudinal manner so that changes in
disease state can be followed.

� The analyses should be quantitative, as concentration changes are important diagnostic
features.

� In humans, each patient should be his/her own control.
� The analyses should measure multiple markers because testing the status of multiple net-

works within the organ of interest is advantageous, and probably necessary.
� Biomarkers may be of different informational types: mRNAs, miRNAs, proteins, metabo-

lites, or lipids. Preliminary evidence suggests that blood proteins and circulating miRNAs
are going to be extremely effective biomarkers (34, 80, 144).

The discovery phase of biomarker development should employ systems approaches to deal with
the signal-to-noise problem outlined above—and these are of many diverse types. For example,
the use of organ-specific blood proteins is powerful because each has the protein address of its
origin. Also, researchers have identified brain cell type–specific transcripts (145), some of which
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THE POWER OF MULTIPARAMETER BIOMARKER PANELS

We illustrate the approach to multiparameter panels by describing a recent study on a 13-protein blood panel that
has the ability to distinguish benign lung nodules from their cancerous counterparts (147). In the United States,
three million lung nodules are discovered each year through imaging, and the question is what to do with them.
One can choose to wait, to use PET imaging or needle aspiration, or to perform bronchoscopy or surgical removal.
Approximately 20% of the patients are subject to expensive procedures, and almost half of these are carried out on
benign nodules. We created the panel to minimize false positives by using high-throughput, quantitative MS and
by targeting 190 selected proteins through the following strategy:

1. Compile a large list of potential biomarker candidates from secreted and membrane proteins that are differ-
entially expressed in normal versus cancer tissue cultures. Also include candidates from the literature.

2. Limit the list to proteins known to have been identified in blood.

3. Assess levels in numerous normal and disease plasma samples. Limit the list to proteins that are reliably
detectable.

We analyzed these 190 proteins against plasmas from 72 individuals with benign lung nodules and 72 with
neoplastic lung nodules. On the basis of their individual classification ability, we took the top-scoring 36 proteins
and randomly assigned them to one million panels of 10 proteins. We rank-ordered the panels according to their
classification ability, then asked which were the “cooperative” proteins seen most frequently in the highest-ranking
panels. With this approach, we identified 13 “cooperative” proteins.

To validate the 13-protein panel, we collected independent samples from 52 normal and 52 neoplastic nodules
from different individuals at four different sites. This 13-protein panel had the ability to identify 90% of the
neoplastic nodules and, more important, the ability to identify more than 40% of the benign nodules and thus rule
them out as neoplastic. In addition, 12 out of 13 proteins mapped into three key disease-perturbed networks in
lung cancer and thus gave one the ability to follow the progression (or reemergence) of lung cancer. This nicely
illustrates how a systems approach to blood biomarker discovery can produce a powerful diagnostic panel. The
same approach can be applied to any of the neurodegenerative diseases.

might be secreted into the blood and hence might serve as useful reflections of cell type–specific
disease. Combining these methods with the use of induced pluripotent stem cells derived from
patients leads to the possibility of using biomarkers to pinpoint cell type–specific pathologies. This
approach also allows evaluation of how secreted molecules from normal-tissue culture cells differ
from those from diseased-tissue culture cells of the same type. There are many additional systems
approaches for the identification of candidate disease biomarkers.

These candidate biomarkers must be taken through both a discovery phase and a validation
phase. Indeed, the Institute of Medicine report on developing omics-based biomarkers offers
excellent criteria for the selection of disease biomarkers (143). (See also sidebar, The Power of
Multiparameter Biomarker Panels.)

The advantages of organ-specific biomarker fingerprints. Currently, biomarkers are identi-
fied by comparing the general molecular profile (e.g., proteins in the blood or other body fluids)
between healthy and diseased individuals. A fundamental limitation to this approach is the signal-
to-noise problem mentioned above. Moreover, if there is a change in a biomarker’s concentration
in a body fluid, one cannot be certain which organ in the body induced the changes because most
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molecules in body fluid originate from multiple organs. Each organ appears to release into the
blood multiple molecules, including proteins, mRNAs, and miRNAs, some of which are organ
specific. Collectively, these represent an organ-specific fingerprint in the blood. If the organ is
healthy, the levels of these molecules in the organ-specific fingerprint will be set at a “steady” level
(or range) for each molecule (and for each individual). If the organ is diseased, the blood levels
of molecules whose cognate biological networks have become perturbed will be affected. Because
each disease perturbs different combinations of networks, one can use these organ-specific finger-
prints to distinguish health from disease and determine which disease. If one has on the order of
50 organ-specific blood biomarkers from each of the 50 major organs and evaluates them every
year, they will provide a wellness assessment that will be effective in visualizing transitions from
health to disease in any of these organs.

Tools for Measurements

We can use either next-generation DNA sequencing or DNA arrays to analyze global changes
of mRNAs and miRNAs. For protein, we can use targeted proteomics to analyze approximately
100 proteins across a dynamic range of approximately 105 with a midattomole level of sensitivity
(146). In the future, we will be able to analyze many proteins from microfluidic chips. Today it
is possible to analyze approximately 30 proteins from a fraction of a droplet of blood in about
5 minutes on a microfluidic chip with ELISA assays ( J. Heath, personal communication). When
more effective protein-capture agents are available, we can imagine chips that will let us measure
2,500 proteins in the same manner (50 organ-specific proteins from each of 50 organs), and this
will open blood protein analyses to the billions of samples that we will need to analyze in the future.

Data Analysis Challenges for Harnessing Blood as a Window
to Neurodegeneration

The identification of high-accuracy biomarkers to track ND diseases in the blood will likely
require combining sophisticated computational approaches with high-sensitivity measurements.
The challenges associated with harnessing the rich molecular milieu of the blood will neces-
sitate a range of systems approaches to overcome. For example, changes in blood measure-
ments of any data type can be induced not just by a particular ND disease, but by a whole
host of environmental, genetic, and disease factors—making the distinction of a relevant sig-
nal from noise highly challenging. Computational analysis for making blood an effective win-
dow thus introduces a hierarchy to the disease diagnosis problem, whereby increasingly specific
questions need to be answered: Is a disease present? Where is it located? What should the di-
agnosis and subsequent therapy be? This challenge can be met, in part, through the use of
coarse-to-fine hierarchies that move from broader to more specific questions and through the
corresponding adjustment of the biomarkers’ specific properties at each level. For example, the
first-pass biomarkers need not be highly specific for disease but could be general warning signs that
come, e.g., from enhanced immune response. The second layer could be built from organ-specific
proteins that would help determine that the dominant disease perturbation is located in the brain.
Subsequent layers of the classification hierarchy would be targeted more toward molecules that are
related to the disease pathology and that are most specifically perturbed in the particular disease
at increasingly fine spatial or tissue-type resolution.

In such a scenario, it is unlikely that any one data type will provide enough sensitivity and
specificity to fully differentiate disease states; therefore, multiple-omic approaches will be needed.
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The blood contains a plethora of different sources of information (as detailed above) that can be
algorithmically harnessed. One question concerning multiple-omic approaches is whether diag-
nostics based on the different omics can lead to combinations of molecular diagnostics with error
rates that have relatively low correlation with one another. If so, multiple omics tests could be
combined to greatly improve overall diagnostic accuracy.

Additionally, even with advanced machine learning and large-scale omics data, it is hard to
imagine that statistical approaches alone would provide us with sufficient statistical power to learn
all that needs to be learned. Thus, harnessing mechanistic context and a rich understanding of the
underlying biological phenomena will also be of crucial importance in focusing the search space and
amplifying the signal. Such approaches can leverage the increasing power of biological networks
as they become better mapped. Taken together, such computational approaches operating on
exponentially increasing amounts of high-throughput data hold substantial promise for the use of
systems medicine to better treat disease and maintain wellness.

Conclusion

Because the brain is difficult to biopsy, the identification of blood biomarkers that reflect disease
in the brain is critical. The new systems approach to blood diagnostics holds significant promise
for uncovering blood biomarkers that accurately reflect normal and diseased brains. Because these
panels of biomarkers will probably reflect the dynamics of disease-perturbed networks, there is
hope that these panels will provide early diagnosis, follow the progression of disease, follow the
response to therapy, and stratify the disease into its different subtypes. We believe that the power
of making blood a window into health and disease will usher in a new era of systems medicine (148)
that will make health care more effective, reduce the cost of health care, and promote innovation
in dealing with both disease and wellness.
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